Local Pixel Value Collection Algorithm for Spot Segmentation in Two-Dimensional Gel Electrophoresis Research

نویسندگان

  • Peter Peer
  • Luis Galo Corzo
چکیده

Two-dimensional gel-electrophoresis (2-DE) images show the expression levels of several hundreds of proteins where each protein is represented as a blob-shaped spot of grey level values. The spot detection, that is, the segmentation process has to be efficient as it is the first step in the gel processing. Such extraction of information is a very complex task. In this paper, we propose a novel spot detector that is basically a morphology-based method with the use of a seeded region growing as a central paradigm and which relies on the spot correlation information. The method is tested on our synthetic as well as on real gels with human samples from SWISS-2DPAGE (two-dimensional polyacrylamide gel electrophoresis) database. A comparison of results is done with a method called pixel value collection (PVC). Since our algorithm efficiently uses local spot information, segments the spot by collecting pixel values and its affinity with PVC, we named it local pixel value collection (LPVC). The results show that LPVC achieves similar segmentation results as PVC, but is much faster than PVC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm

Introduction Two-dimensional gel electrophoresis (2DGE) is a powerful technique in proteomics for protein separation. In this technique, spot segmentation is an essential stage, which can be challenging due to problems such as overlapping spots, streaks, artifacts and noise. Watershed transform is one of the common methods for image segmentation. Nevertheless, in 2DGE image segmentation, the no...

متن کامل

Improved NL-means Algorithm for Two-dimensional Gel Electrophoresis Images Denoising

Denoising is a fundamental stage of two-dimensional gel electrophoresis (2DGE) images analysis, which strongly influences spot detection, spot matching and other pixel-based methods. It is critical to effective noise suppression. This paper proposed a new method based on the Non-Local-means (NLmeans) algorithm, which is simple and can protect the structure well. Compared with the Translation In...

متن کامل

A fast spot segmentation algorithm for two-dimensional gel electrophoresis analysis.

An important issue in the automation of two-dimensional gel electrophoresis image analysis is the detection and quantification of protein spots. A spot segmentation algorithm must detect, define the extent of, and measure the integrated density of spots under a wide variety of actual gel image conditions. Besides these functions, the algorithm must be memory efficient to be able to process very...

متن کامل

An image analysis suite for spot detection and spot matching in two-dimensional electrophoresis gels.

We propose a suite of novel algorithms for image analysis of protein expression images obtained from 2-D electrophoresis. These algorithms are a segmentation algorithm for protein spot identification, and an algorithm for matching protein spots from two corresponding images for differential expression study. The proposed segmentation algorithm employs the watershed transformation, k-means analy...

متن کامل

A Novel Gaussian Extrapolation Approach for 2D Gel Electrophoresis Saturated Protein Spots

Analysis of images obtained from two-dimensional gel electrophoresis (2D-GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software available currently has proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this work, we present an effective technique for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007